Silicon Nitride PCSN3000

General Properties

Silicon Nitride is a lightweight and tough material with good thermal shock properties and high hardness values. It is particularly suitable for any application needing a fracture tough, hard and light material that can be used at elevated temperatures.

Like most technical ceramics, silicon nitride shrinks when sintered and in most applications needs to be ground to remove the outer skin, but as most uses are for tight tolerance components, diamond grinding is usually required in any case.

Silicon Nitride is seen as part of a group of materials with good fracture toughness. Other materials such as Zirconia don’t have the high temperature characteristics of silicon nitride.

See our interactive material comparison table for more information – www.precision-ceramics.com

Typical Applications

• Aerospace Applications
• Bearing Applications
• Chemical Plant Engineering & Construction
• Engine Wear Parts
• Foundry Applications
• Mechanical Engineering
• Medical Components

Typical Properties

<table>
<thead>
<tr>
<th>Process</th>
<th>Hot Isostatic Pressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>Grey/Black</td>
</tr>
<tr>
<td>Geometry</td>
<td>Three-Dimensional Components, Non-Porous</td>
</tr>
<tr>
<td>Maximum Size Ø</td>
<td>280mm, Length 680mm</td>
</tr>
</tbody>
</table>

Density ρ [1] (g/cm³) 3.18 - 3.26
Residual Porosity (%) < 0.2
Open Porosity (%) 0
Grain Size (Length) (μm) 1 - 15
Compressive Strength (MPa) 3000
Bending Strength sRT [2] (MPa) 760 - 830
Weibull-Modulus m 12
Youngs Modulus E (GPa) 300 - 310
Hardness HV [3] (GPa) 15.3 - 15.6
Fracture Toughness Kc [4] (MPam²/2) 6.5 - 6.2
Poissons Ratio ν 0.26

Thermal Properties

Maximum Working Temperatures
- Inert Atmosphere (°C) 1400
- Oxidizing Atmosphere (°C) 1200
Specific Heat Capacity (J/kgK) 700
Thermal Conductivity λ (W/mK) 25
Coefficient of Thermal Expansion RT-1000°C (α/K) 3.2
RT-250°C (α/K) 1.9
RT ± 20°C (α/K) 1.1
Thermal Shock Parameter R1 [5] (K) 590 - 620
Thermal Shock Parameter R2 [6] (W/mK) 14650 - 15480

Electrical Properties

Electrical Resistivity (RT) Ωcm 10⁴
Dielectric Constant (1 MHz) - 8

[1] Determination of density and porosity according to DIN 623-2
[2] Average value of 4-point bending strength at room temperature according to DIN EN 843-1
[3] Hardness according to DIN EN 843-1
[4] Calculated from crack length derived from Vickers hardness indentation, according to Niihara
[5] Critical temperature difference for an infinite high heat transfer (quenching)
[6] Thermal shock coefficient at finite constant heat transfer (slowly heating)

The material characteristics listed above are measured with testing samples. They cannot be transferred to components with different size, shape or surface properties. We reserve the right to alter properties within the scope of technical progress or new developments.

www.precision-ceramics.com

PRECISION CERAMICS USA, INC.
9843 18th St North, Suite 120, St. Petersburg, FL 33716
Tel: (727) 388 5060 Fax: (813) 435 2020
Email: info@precision-ceramics.com

www.precision-ceramics.com