Boron Carbide (B4C)
Material Advantages
- High hardness
- Low density
- High melting point
- High elastic modulus
- Chemical inertness
- High neutron absorption cross-section
- Excellent thermoelectric properties
Material Properties
The below table compares the material properties of Boron Carbide and Precision Ceramics Boron Carbide/Silicon Carbide ceramic composites; DuraWear and DuraShock:
Density
Unit
Boron Carbide (B4C)
DuraWear (B4C+SiC)
DuraShock (SiC+B4C)
Hardness HV0.5
Unit
Boron Carbide (B4C)
DuraWear (B4C+SiC)
DuraShock (SiC+B4C)
Fracture Toughness KIC
Unit
Boron Carbide (B4C)
DuraWear (B4C+SiC)
DuraShock (SiC+B4C)
Compressive Strength
Unit
Boron Carbide (B4C)
DuraWear (B4C+SiC)
DuraShock (SiC+B4C)
Flexural Strength
Unit
Boron Carbide (B4C)
DuraWear (B4C+SiC)
DuraShock (SiC+B4C)
* KIC Toughness as measured by the indentation method.
Disclaimer: The values presented are mean and typical of those resulted from test samples. They are provided as an indication only to serve as guidance in the design of ceramic components and are not guaranteed in any way. The actual values can vary according to the shape and size of the envisaged component.
Boron Carbide Manufacturing
Boron Carbide can be machined in green, biscuit, or fully dense states. While in the green or biscuit form it can be machined relatively easily into complex geometries. However, the sintering process that is required to fully densify the material causes the Boron Carbide body to shrink approximately 20%. This shrinkage means that it is impossible to hold very tight tolerances when machining Boron Carbide pre-sintering. In order to achieve very tight tolerances, fully sintered material must be machined/ground with diamond tools. In this process a very precise diamond coated tool/wheel is used to abrade away the material until the desired form is created. Due to the inherit hardness of the material, this can be a time consuming and costly process.
Related Materials

Boron-Silicon Carbide
DuraShock™
DuraShock is a Boron-Silicon Carbide ceramic composite, developed to give the very best combination of high ballistic performance and weight saving considerations.

Silicon Carbide
CeramaSil-C™
Silicon Carbide (SiC) is one of the lightest, hardest, and strongest advanced ceramic materials with exceptional thermal conductivity, acid resistance, and low thermal expansion.
Frequently Asked Questions
- What is Boron Carbide used for?
The combination of low specific weight, high hardness and reasonable toughness makes it a suitable material for body and vehicle armor. Boron carbide is also extensively used as control rods, shielding materials and as neutron detectors in nuclear reactors due to its ability to absorb neutrons without forming long lived radionuclide. As it is a p-type semiconductor, boron carbide can be a suitable candidate material for electronic devices that can be operated at high temperatures. Boron Carbide is also an excellent p-type thermoelectric material. Some typical applications of boron carbide include:
- Sand blasting nozzles
- Ball & roller bearings
- Seals
- Wire drawing dies
- Body armour
